
COSC 123 – 1COSC 123 – 1

Welcome to COSC 123!

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Introduction to
COSC 123 –

Computer Creativity

COSC 123 – 3COSC 123 – 3

Credits and Acknowledgements

¥ Many thanks to Drs. Abdallah Mohammed for creating the
course notes, which we will instead of a “textbook” in this course

¥ Thanks also to Dr. Ramon Lawrence for creating the original
version of this course and creating a vision of what this course
should be.

COSC 123 – 4COSC 123 – 4

About me

COSC 123 – 5COSC 123 – 5

Research Interests

Research Interests

Research Interests

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Processing

COSC 123 – 9COSC 123 – 9

Course Objectives
1) To be creative with programming and write fun, interesting

computer programs.

2) To master fundamental programming skills of data variables,
decisions, iteration, methods, and the basics of object-oriented
programming, and how to create larger programs

3) To design and develop strategies for solving basic programing
problems.

4) To algorithmically create 2D graphics, animations, and simple
games using Processing language.

5) To design interactive graphical user interfaces.

6) To learn how to switch from Processing to Java.

COSC 123 – 10COSC 123 – 10

The Essence of the Course
¥ If you walk out of this course with nothing else you should:

Become a creative programmer with the ability to problem
solve, perform critical thinking, and communicate precisely.

¥ This course is not only about learning a particular language (or
even programming itself), it is about being a creative problem
solver and critical thinker!

COSC 123 – 11COSC 123 – 11

Programming using Processing
¥ You already learned algorithmic thinking using basic

programming techniques in COSC111 and COSC122.

¥ In addition to being able to solving algorithmic problems (similar
to what you did in COSC 111 or COSC 122), we will try to re-
learn programming using graphical functions, especially to
create user interfaces, animations, and simple 2D games.

¥ We will use basic programming techniques (e.g. conditionals,
loops, arrays, objects, etc.) on Sketches to draw and interact
with shapes and images.

By: Michael Pinn

COSC 123 – 12COSC 123 – 12

Processing Examples!
¥ Algorithmic Drawing

¥ Example: Artistic Designs

By: Sabrina Verhage

COSC 123 – 13COSC 123 – 13

Processing Examples!
¥ Artistic Animations

¥ Example:

By: Michael Pinn

COSC 123 – 14COSC 123 – 14

Processing Examples!
¥ Artistic Animations

¥ Example: particle systems

By: Timo Lachmeijer

COSC 123 – 15COSC 123 – 15

Processing Examples!
¥ Interactive Animations

¥ Example: controlled particle system

By: Konrad Jünger

COSC 123 – 16COSC 123 – 16

Processing Examples!
¥ Interactive Animations

¥ Example: Google Doodle (June 2017)

https://www.google.com/doodles/oskar-fischingers-117th-birthday

COSC 123 – 17COSC 123 – 17

Processing Examples!
¥ Interactive Animations

¥ Example: 2D Games

Game name: Toon Shooters 2

COSC 123 – 18COSC 123 – 18

Example of things you will do!

COSC 123 – 19COSC 123 – 19

Example of things you will do!

COSC 123 – 20COSC 123 – 20

Example of things you will do!

Player needs to
move the paddle to

hit the ball up

When the ball is hit, score
is incremented and ball

speed increases

If ball touches bottom
edge, game is over,
and animation stops.

Game is Over.

COSC 123 – 21COSC 123 – 21

Why this Course is Important
¥ This course will make programming fun and relevant.

¥ Our economy, health, and entertainment is dependent on software
written by programmers.

¥ We will learn to be creative programmers, so that we may create
great software to be used by others.

¥ Important results:
¥ Storyboarding – We will sketch our stories before programing

them.
¥ Algorithmic Thinking – We will learn how to solve problems by

specifying precise sequences of actions.
¥ Collaboration – We will program in teams of two to build

interpersonal skills and increase our knowledge.
¥ Processing and Java Languages – We will use Processing which

is based on Java programming language – Java can be used in
many areas including future computer science courses.

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Ed Discussion (Demo)

Get invited to Ed Discussion

Setup your Machine

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Break

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Unsyllabus (Demo)

Navigating the course website

How Learning Works

How Learning Works

Course features

- 48 hour grace-period on all due dates and
deadlines.
- Lab attendance is not mandatory (attend any
and all sections that work for you).
- Classes are recorded, but not live streamed.
Recordings are available 24-48 hours after the
class.
- Many opportunities to demonstrate your
learning.
- Weekly learning logs and reflections to make
you think about your learning (metacognition).
- Each test has a "bonus test" available one
week later; for each test, we will take the
better score of the pair.

Course features

- No high-stakes exams (the single largest
assessment item is the final exam).
- All course assessments are completely open
book, open notes, and open web (except for
cheating websites like Chegg, CourseHero,
Slader, Bartleby, etc...)
- Plenty of TA and instructor student hours and
several outside of normal business hours.
- Class website that outlines exactly what you
should do when to help you manage your time.
- Tonnes of supplemental materials including
other - instructional videos in case you want a
different perspective.
- A true willingness from the instructor (me)
to help you learn and succeed in this course!

Markdown Tutorial (20 mins)

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

See you on Friday!

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Getting Started with
Processing

1) What is Processing

2) Experiment with the Processing Development Environment.

3) Printing on the console

COSC 123 – 41COSC 123 – 41

The Processing Language
¥ Processing is a programming environment that aims to help

create visually oriented applications, such as sketches,
animations, and games.

¥ Processing consists of:
¥ The Processing Development Environment (PDE).

n The software we will use to write and run our code in this course.
n Has a minimalist set of features suitable for developing small programs

¥ The Processing core API and other libraries
n A collection of functions (aka commands or methods) for performing

the different actions in a program.

¥ A language syntax identical to Java.
n Processing is Java, but with simpler syntax.
n Processing was ported to other languages later (e.g. JS, Python).

COSC 123 – 42COSC 123 – 42

Processing Development Environment (PDE)

Menu

Run / Stop

Sketch name

Your code goes into the
Text Editor here

Console and Errors Window

The code
represents a
sketch. Each sketch
is actually a
subclass of the
PApplet Java
class

Message
Area

COSC 123 – 43COSC 123 – 43

PDE: Creating and Running a Sketch
¥ To create a program code

file, select File->New or

¥ Your new program is called
a sketch in Processing.
Sketches are saved in a
folder on your computer
called sketchbook.

¥ To write your code, start
typing in the Text Editor”
area of the PDE.

¥ Use the buttons Run and
Stop on the toolbar to run or
terminate your program.

COSC 123 – 44COSC 123 – 44

PDE: The Console Window
¥ The console

window displays
1) Text output, e.g.

when printing
text using
print() and
println()
functions.

2) Error messages

COSC 123 – 45COSC 123 – 45

Functions
¥ A function is a sequence of statements that performs a specific

action.
¥ Creating a function avoids repeating statements and allows for

better code organization.

¥ A function must have a name. Whenever we want to perform the
function’s action, we need to call (invoke) the function by its
name.
¥ For example, to print something on the console, we write

println("Hello World");

¥ Processing comes with a library of predefined functions that
may be used to perform different actions such as drawing
shapes. To use these functions, you need to call their names
with the appropriate parameters.
¥ In Java, a function is also called a “method”.

COSC 123 – 46COSC 123 – 46

ExerciseExercise

Output Text to the Console
¥ Use print() and println() to display the following text on the

console. Note that the number 6 on the second line is computed
as 3*2.

COSC 123 – 47COSC 123 – 47

ExerciseExercise

Output Text to the Console
¥ What is the output of this program? Explain.

2D Coordinate System

COSC 123 – 49COSC 123 – 49

The Coordinate System
¥ Drawing on the screen is done by specifying coordinates which

refer to a location on the screen.

¥ By default
¥ origin is the upper-left hand corner of the screen.
¥ x coordinate is horizontal, getting bigger as we move right.
¥ y coordinate is vertical, getting bigger as we move down.

(0,0)

y

(80,10)

(30,70)

x

COSC 123 – 50COSC 123 – 50

QuestionQuestion

Coordinate system
Assume we have the 100x100 sketch shown below. Each small
square is 10x10 pixels. What is the (x , y) location of the point?

A. (30, 50)

B. (50, 30)

C. (3, 5)

D. (5, 3)

E. None of the above

COSC 123 – 51COSC 123 – 51

Drawing Primitive Shapes
¥ To draw shapes on the screen, we call the function that

represent each shape with arguments representing the shape
dimensions.

¥ Example of primitive shapes
¥ Point: point(90,60);

¥ Line: line(50,10,70,20);

¥ Rectangle: rect(10,25,40,20);

¥ Ellipse: ellipse(50,70,40,20);

Function name Parameters

COSC 123 – 52COSC 123 – 52

Drawing Primitive Shapes, cont’d

y

x

line(50,10,70,20);

10 20 30 40 50 60 70 80 90
80

70
60

50
40

30
20

10
0

point(90,60);

rect(10,25,40,20);

ellipse(50,70,40,20);

Start point End point

top-left point width height

center point width height

COSC 123 – 53COSC 123 – 53

Drawing Primitive Shapes, cont’d
¥ Here is the Processing code and output

// draw the shapes
line(50,10,70,20);
rect(10,25,40,20);
point(90,60);
ellipse(50,70,40,20);

